Bonding Analyses, Formation Energies, and Vibrational Properties of $M-R_2dtc$ Complexes (M = Ag(I), Ni(II), Cu(II), or Zn(II))

I. Georgieva* and N. Trendafilova

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria Received: June 27, 2007; In Final Form: September 12, 2007

Detailed theoretical studies based on density functional theory (DFT)/B3LYP calculations of dimethyl- and diethyldithiocarbamate complexes of Ni(II), Cu(II), Zn(II), and Ag(I) are performed to characterize the metalligand bonding type as well as the metal-ligand bonding strength depending on the metal and the dialkyl substituent. The metal-ligand interactions in the studied complexes are investigated by means of charge decomposition analysis, energy partitioning analysis (EPA), and natural bond orbital analysis. According to the EPA calculations, the electrostatic attraction is the dominant contribution to the $M-S_2(R_2dtc)$ (dtc = dithiocarbamate) bonding. The electrostatic and the orbital energies follow the order of the total binding energy, and hence both contributions are responsible for the binding energy order of $M(R_2dtc)_2$ complexes. The stability of the $M(R_2dtc)_2$ complexes is estimated by means of calculated formation reaction energies in the gas phase and solution, and it decreases in the order $Ni(R_2dtc)_2 > Cu(R_2dtc)_2 > Zn(R_2dtc)_2$. Larger formation reaction energies are found for M(Et₂dtc)₂ than for M(Me₂dtc)₂ complexes. The calculations predict stabilization of $M(II)(R_2dtc)_2$ complexes going from the gas phase to a polar solvent and destabilization of the bidentate AgR₂dtc complex in a polar solvent. Gas-phase frequency calculations of all possible bonding types, symmetrical, asymmetrical, and uni- and bidentate, predict one band due to the ν (CS) IR absorption, and therefore the number of the bands in the $1060-920 \text{ cm}^{-1}$ region could not be used to discern the metalligand bonding type. Periodic DFT frequency calculations for Cu(Et₂dtc)₂ reveal that the splitting observed in the solid-state spectra of the complexes arises from the nonplanar MS₄ fragment and intermolecular contacts but not from asymmetrical bonding. The calculations suggest that the important vibrational characteristic that can be used to discern uni- and bidentate bonding is the Raman activity of the $\nu(CS)$ band: It is very high for the unidentate dtc bonding (ν (C=S)) and low for the bidentate bonding (ν_{as} (CS)).

1. Introduction

Dithiocarbamates (dtc's) are a class of compounds with important chemical and biological properties. The high coordination ability of dtc to transition metals prompted intensive experimental and theoretical investigations of the metal dithiocarbamates.¹⁻⁶ Metal-chelating properties of dtc have attracted great attention because of their application in wide areas such as analytical methods for determination of heavy atoms,7 industrial separation processes,8 agriculture,9 medicine,10 and the rubber industry.11 The biological activity of dtc is based on the complex formation of the active dtc group with metal atoms of metal-containing enzymes, producing enzyme inhibition.¹² The intensively utilized dtc fungicides influence the biological activity and physical properties of the soil as well as human health. It was established that dtc decomposition and elimination from the natural environment are slowed down because of dtc complexation with metals in soil. However, dithiocarbamate chelating agents have been used extensively to remove heavy metals from various wastewaters.¹³⁻¹⁶ The effectiveness of the dtc reagents for heavy metal binding requires high selectivity and coordination ability of the ligands to the metal ions and stable precipitates that cannot decompose and release the metal to the environment during a short period of time. To obtain quantitative information on the thermodynamic stabilities of the metal dtc complexes, calorimetric measurements

* Author to whom correspondence should be addressed. E-mail: ivelina@ svr.igic.bas.bg.

in solution, vacuum sublimation, and evaluation of stability constants have been carried out.^{1,2} The global picture of the thermodynamic stability obtained from the experimental approaches consists of many coupled dissociation and association equilibria, and it does not give information on detailed structural possibilities and on their relative stabilities. Quantum chemical and spectroscopic studies could provide essential information on the structure, conformational behavior, and reactivity of dtc. The analysis of the theoretical results is important for understanding of the factors responsible for the coordination ability of dtc to different metal ions as well as for estimation of the mode and the strength of the M-S(dtc) bonding, the character of M-S interactions, and the stability of the metal complexes. Formation reaction energy calculations in the gas phase and solution give the possibility to evaluate the effect of the solvent. Deeper insight into the reactivity, stability, and M-dtc bonding would help the effective usage of chelating properties of dtc in diverse areas.

The first part of the present work describes the selection of an appropriate density functional theory (DFT) method by means of comparison with ab initio methods accounting for electron correlation (MP2 and CCSD methods) for the reference H₂dtc molecule and by comparison with X-ray structural data of Ni-(Et₂dtc)₂, Cu(Et₂dtc)₂, and Zn(Et₂dtc)₂ (Et₂dtc = diethyldithiocarbamate). In the second part, we applied the method selected to obtain information about the geometries and stabilities of Ag(I), Ni(II), Cu(II), and Zn(II) complexes with R₂dtc ligands

(R = Me (methyl) or Et (ethyl)). The solvation effect has been computed using the polarized continuum model (PCM) based on a self-consistent reaction field.¹⁷⁻¹⁹ A variety of structural arrangements such as uni- or bidentate with respect to the bonding of the thio group or cis/trans with respect to the relative position of the two dtc molecules are considered. The M-R₂dtc bonding mode and strength are evaluated on the basis of the binding energy calculations. The M-R₂dtc bonding character is estimated by means of energy partitioning analysis (EPA) of electrostatic, orbital, and repulsive energy contributions as well as by analysis of σ -donation and π -back-donation contributions to the donor-acceptor interaction. A theoretical vibrational study of different model metal complexes of R₂dtc is performed to find out vibrational criteria capable of discerning uni- or bidentate symmetrical and bidentate asymmetrical bonding types in the M-R₂dtc complexes. The effect of the molecular symmetry, the coupling of the ligand modes, and the effect of the N-substituent on the vibrational behavior of $Ag(I)(R_2dtc)$ and M(II)(R₂dtc)₂ are investigated and discussed. The solidstate effect on the vibrational pattern of the complexes is estimated by means of comparison of the results from the gasphase calculations of $Cu(Et_2dtc)_2$ with that from solid-state calculations.

2. Computational Details

Geometry optimization, harmonic vibrational, and conformational analyses are performed for H₂dtc, Me₂dtc, Et₂dtc, and their deprotonated forms. For selection of suitable DFT levels of calculations, the simplest H₂dtc and H₂dtc⁻ molecules served as benchmark examples. Calculations with the nonhybrid BLYP functional^{20,21} and the hybrid B3LYP^{20,22} and BHLYP^{20,23} functionals are done, and their reliabilities are checked using reference MP2 calculations (frozen inner shells)²⁴ and coupledcluster CCSD calculations with singles and doubles substitutions (frozen core approximation and full electron correlation).²⁵ Previous theoretical studies have shown that the B3LYP functional is suitable also for geometry optimization of transition metal complexes.²⁶ For Ni(II), Cu(II), and Zn(II), the 6-311+G-(d) basis set is used, for Ag(I) LANL2DZ, and for C, S, N, and H atoms the 6-31++G(d,p) basis set. For the M(II)-dtc complexes, the combined basis set will be referred as B1, and for Ag(I)-dtc as B2. B3LYP functional calculations are performed using the Gaussian 03 program package.²⁷ Atomic charges are obtained using the natural population analysis of Weinhold and Hirshfeld.²⁸ Basis set superposition error (BSSE) corrections to the M-R₂dtc binding energy were calculated for the B1 (B2) basis set using the counterpoise method.²⁹ The bonding situation in the M-R₂dtc complexes is investigated by means of energy partitioning analysis (EPA) and charge decomposition analysis (CDA). The EPA is based on the methods of Morokuma³⁰ and Ziegler and Rauk³¹ as implemented in the ADF(2005.01) program package.³² The partitioning scheme is performed at the PW91/TZP level³³ with B3LYP/ B1(B2) optimized structures. In these calculations, the relativistic effects have been considered by means of the zero-order regular approximation (ZORA).^{34,35} Within this method, the total bonding energy between two fragments, $\Delta E_{\rm b}$, is split into the three components

$$\Delta E_{\rm b} = \Delta E_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb} \tag{1}$$

 ΔE_{elstat} (electrostatic interaction energy) is computed using the frozen electron density distribution of the fragments in the geometry of the complex. ΔE_{Pauli} represents the repulsive

electron interactions between occupied orbitals, and ΔE_{orb} is the stabilizing orbital interaction due to the relaxation of the Kohn-Sham orbitals in the self-consistent field procedure. The bonding situation in the transition metal complexes of R₂dtc is investigated also in the frame of donor-acceptor interaction by means of CDA.36 The CDA decomposes the Kohn-Sham determinant of a complex [ML] in terms of fragment orbitals of the chosen ligand L and the metal [M]. The [M] \leftarrow L donation, q[d], is then given by mixing of the occupied orbitals of L and vacant orbitals of [M]. The [M] \rightarrow L back-donation, q[b], in return is given by the mixing of the occupied orbitals of [M] and vacant orbitals of L. The mixing of the occupied orbitals of both fragments gives the repulsive polarization term q, and the mixing of the unoccupied orbitals gives the residual term q[s]. The CDA calculations of the M(R₂dtc)₂ complexes are performed with the 6-31G(d,p) basis set on all of the atoms (except for Ag(I)) because the larger B1 basis set including diffuse functions gave great negative values for the residual term. A similar deterioration of the CDA results by applying a larger basis set was reported already in the literature.³⁷

The solvent effect of dimethylsulfoxide (DMSO) on the reaction formation energy for the $M(R_2dtc)_2$ complexes is computed using a PCM.^{17–19}

The periodic DFT calculations of $Cu(Et_2dtc)_2$ are performed using the Vienna ab initio simulation package (VASP).³⁸ The DFT is parametrized in the local density approximation with the exchange–correlation functional proposed by Perdew and Zunger and corrected for nonlocality in the generalized gradient approximations using the Perdew–Wang91 (PW91) functional. The interaction between the core and the electrons is described using the projector augmented wave potentials for all atoms.

3. Results and Discussion

3.1. Molecular Geometries. 3.1.1. Geometry Calculations of $R_2 dtc$ (R = H, Me, or Et). Conformational analysis of the neutral and deprotonated forms of alkyl dithiocarbamate (R2dtc) (R = H, Me, or Et) is performed in the gas phase (Figure 1). Several functionals, nonhybrid BLYP and hybrid B3LYP and BHLYP, with the 6-31++G(d,p) basis set are applied for the simplest H₂dtc and H₂dtc⁻ species, and the results are referred to MP2 and CCSD calculations (Table 1). The BLYP, B3LYP, and BHLYP calculations predict the minimum structure of H_2 dtc in C_s symmetry, whereas according to the MP2 and CCSD calculations the H₂dtc minimum is in C_1 symmetry. The C_1 symmetry lowers the energy by 0.1–0.17 kcal/mol than that of the C_s geometry and shows slightly out-of-plane deviation of the H atoms. The CCSD calculations with B3LYP and MP2 optimized structures reveal a small energy difference (0.03 kcal/ mol), indicating the small effect of the calculated geometry. All DFT, MP2, and CCSD calculations predict a minimum in C_1 symmetry for the deprotonated H₂dtc⁻ and out-of-plane deviation of the two S atoms. The energy difference between C_1 and C_s geometries at different levels varies between 0.01 and 0.7 kcal/mol. As compared to the CCSD bond lengths, the B3LYP calculated C-N bond length is in good agreement, whereas the C-S and S-H bond lengths are longer (with ~0.01 Å). At the same time, BHLYP well reproduces the C-S and S-H bond lengths and gives shorter C-N distances (~0.01-0.03 Å). BLYP calculations give the worst geometry parameters in comparison to the CCSD results. As compared to CCSD-(full) calculations, for H₂dtc the absolute deviation of the BHLYP bond lengths is 0.006 Å and of the B3LYP bond lengths is 0.008 Å, and for $H_2 dtc^-$ it is 0.010 and 0.007 Å, respectively. Obviously, both DFT levels are appropriate for dtc geometry

Figure 1. Optimized geometrizes of (a) H₂dtc, (b) Me₂dtc, and (c) *trans*-Et₂dtc ligands at the B3LYP/6-31++G(d,p) level of theory.

TABLE 1: Calculated Geometrical Parameters of H_2dtc and H_2dtc^- Species at Different Levels of Theory with the 6-31++G(d,p) Basis Set

				CCSD ^a /	full ^b	MP2
geometric parameters	BLYP	B3LYP	BHLYP	C_s		C_s
$H_2dtc(CNS_2H_3)$	C_s	C_s	C_s	(imaginary fre	equencies)	(imaginary frequencies)
C1-S2	1.678	1.658	1.647	1.651/	1.649	1.641
C1-S1	1.820	1.795	1.772	1.782/	1.779	1.779
S1-H	1.355	1.343	1.331	1.331/	1.330	1.329
C1-N1	1.366	1.352	1.338	1.353/	1.352	1.357
N1-H	1.018	1.010	1.001	1.006/	1.006	1.008
	1.019	1.010	1.001	1.006/	1.006	1.008
S1-C1-S2	125.2	124.7	124.4	124.8/124	4.7	125.0
S2-C1-N1	123.7	123.9	123.7	123.6/12	3.6	123.8
geometric parameters	BLYP		B3LYP	BHLYP	CCSD ^a /full ⁱ	b MP2
$H_2 dtc^- (CNS_2 H_2^-)$	C_1		C_1	C_1	C_1	C_1
C1-S2	1.733		1.718	1.706	1.707	1.697
C1-S1	1.733		1.718	1.706	1.707	1.697
C1-N1	1.402		1.383	1.359	1.390	1.398
N1-H	1.02		1.011	0.999	1.008	1.010
	1.020		1.011	0.999	1.008	1.010
S1-C1-S2	128.2		127.9	127.6	127.8	128.0
S2-C1-N1	115.9		116.0	116.2	116.1	116.0

^a Valence electrons are included in a correlation calculation. ^b All electrons are included in a correlation calculation.

SCHEME 1: Resonant Structures of R₂dtc- Species

calculations. We selected the B3LYP functional for all calculations because the B3LYP geometry for the active ligand form, H_2dtc^- , in the metal complexation reaction is in best agreement with the CCSD results. Further, the ligand calculations are performed at the B3LYP/6-31++G(d,p) level. The neutral Me₂dtc and the deprotonated Me₂dtc⁻ species are minima in C_1 symmetry. Generally, the C, N, and S atoms are obtained approximately in a plane, and the CH₃ groups are asymmetric (Figure 1b). According to the calculations, the neutral and the deprotonated Et₂dtc species have two minima with cis and trans orientations of the ethyl radicals. The trans conformation of the neutral form is more stable by 0.7 kcal/mol, and that of the deprotonated form by 5.1 kcal/mol (Figure 1c).

Different resonant structures are possible for H_2dtc^- , Me_2dtc^- , and Et_2dtc^- , as shown in Scheme 1. Natural bond orbital (NBO) analysis of the deprotonated ligands, H_2dtc^- , Me_2dtc^- , and Et_2dtc^- , could suggest the most probable resonant structure, and the data obtained are given in Table 2. As seen in Table 2, the shortest C1–N1 bond length and double bond character of the bond for H_2dtc^- reveal the resonant structure IV, whereas double bond character of the C–S bond for Me_2dtc^- and Et_2dtc^-

TABLE 2: Selected Calculated Bond Lengths (in Å) of R_2dtc (R = H, Me, or Et) and R_2dtc^- and Natural Bond Orbital Analysis of Deprotonated Species at the B3LYP/ 6-31++G(d,p) Level

bond ^a	H ₂ dtc	Me ₂ dtc	<i>trans</i> - Et ₂ dtc	H ₂ dtc ⁻	Me ₂ dtc ⁻	<i>trans</i> - Et ₂ dtc ⁻
S1-H C1-S1 pol	1.343 1.795	1.344 1.805	1.344 1.809	1.718 58:42(σ)	1.728 58:42(σ) 25:75(π)	1.728 58:42(σ)
C1-S2 pol	1.658	1.671	1.675	1.718 58:42(σ)	1.728 58:42(σ)	1.728 58:42(σ) 25:75(π)
C1-N1 pol	1.352	1.352	1.351	1.383 $38:62(\sigma)$ $18:82(\pi)$	1.393 36:64(σ)	1.389 36:64(σ)
N1-C2 N1-C3		1.466 1.467	1.473 1.476		1.452 1.452	1.463 1.463

^{*a*} Atom numbering is given in Figure 1. Pol is the percentage of occupancy assigned to the first and second atoms.

indicates resonant structures II and III, respectively. On the basis of the occupation percentage obtained from the NBO analysis, $C1 \rightarrow N1$ and $S1(2) \rightarrow C1 \sigma$ bond polarizations are predicted. That is important information used below to explain the bond length changes upon the metal interaction.

3.1.2. Geometry Calculations for $M(Et_2dtc)_2$ (M=Ni(II), Cu-(II), or Zn(II)). Table 3 gives selected calculated and experi-

TABLE 3: Calculated Geometrical Parameters of $M(Et_2dtc)_2$ (M = Ni(II), Cu(II), or Zn(II)), Compared to the Experimental Values (Bond Lengths, *R*, in Å; Bending Angles, *A*, in deg)

	$Ni(Et_2dtc)_2$ (LS)			Cu(Et ₂ dtc) ₂		$Zn(Et_2dtc)_2$		
geometry	expt ^a	B3LYP/B1	expt ^b	B3LYP/B1	PW91 ^c	$expt^d$	B3LYP/B1	
<i>R</i> (M-S1)	2.207(2)	2.253 (2.375 HS)	2.317(2)	2.359	2.325	2.443(3)	2.391	
<i>R</i> (M–S2)	2.195(2)	2.253 (2.375 HS)	2.297(2)	2.359	2.324	2.355(3)	2.392	
<i>R</i> (M–S1′)		2.253 (2.375 HS)	2.301(2)	2.359	2.322	2.331(3)	2.393	
<i>R</i> (M–S2′)		2.253 (2.375 HS)	2.339(2)	2.359	2.330	2.815(2)	2.391	
R(S1-C1)	1.700(7)	1.731	1.711(8)	1.735	1.723	1.722(10)	1.745	
R(S2-C1)	1.713(7)	1.731	1.713(8)	1.735	1.721	1.725(10)	1.744	
R(C1-N1)	1.33(10)	1.338	1.350(10)	1.340	1.344	1.340(13)	1.342	
R(N1-C2)	1.49(13)	1.473	1.470(12)	1.475	1.468	1.440(14)	1.476	
R(N1-C3)	1.48(17)	1.473	1.470(11)	1.475	1.471	1.490(15)	1.476	
R(C2-C4)	1.50(15)	1.531	1.520(16)	1.532	1.527	1.520(18)	1.531	
R(C3-C5)	1.53(22)	1.531	1.520(17)	1.532	1.527	1.480(22)	1.531	
R(S1'-C1')		1.731	1.708(7)	1.735	1.721	1.723(10)	1.744	
R(S2'-C1')		1.731	1.736(7)	1.735	1.722	1.737(9)	1.745	
R(C1'-N1')		1.338	1.330(8)	1.340	1.344	1.310(12)	1.342	
R(N1'-C2')		1.473	1.46(1)	1.475	1.469	1.480(15)	1.476	
R(N1'-C3')		1.473	1.48(1)	1.475	1.467	1.480(14)	1.476	
R(C2'-C4')		1.531	1.530(15)	1.532	1.527	1.510(21)	1.531	
<i>R</i> (C3'-C5')		1.531	1.510(17)	1.532	1.527	1.530(20)	1.531	
A(S1-M-S2)	79.11(11)	78.77	77.19 (9')	76.40	76.68	75.47'(13)	77.19	
A(S1'-M-S2')		78.77	76.27 (9')	76.40	76.68	69.34'(12)	77.18	
A(M-S1-C1)	85.25(26) 84.44(26)	84.94	83.43 (28')	84.60	84.68	81.53′(35)	82.61	
A(S1-C1-S2)	110.34(37)	111.35	114.36 (40')	114.4	113.72	117.32'(51)	117.55	
A(S1'-C6-S2')		111.35	112.56 (35')	114.4	113.86	117.47′(49)	117.55	

^a See ref 39. ^b See ref 40. ^c Calculations with VASP. ^d See ref 41.

mental bond lengths and bond angles of $Ni(Et_2dtc)_2$, $Cu(Et_2dtc)_2$, and Zn(Et₂dtc)₂ complexes. The optimized compounds are presented in Figure 2. Experimental structural data for the compounds are available from X-ray diffraction analysis.³⁹⁻⁴¹ The calculations of high-spin (HS, ³Bu) and low-spin (LS, ¹Ag) states of Ni(Et₂dtc)₂ in C_{2h} symmetry revealed stabilization of the low-spin state by 1.4 kcal/mol. According to the calculations, the M-S bond lengths for M(Et₂dtc)₂ increase in the order Ni-S (LS) < Cu-S < Zn-S, and this trend is consistent with the experimental one. Similar M-S bond lengths and the same order are calculated for M(Me₂dtc)₂ complexes. In the case of high-spin Ni(Et₂dtc)₂ calculations, other orders of M-S bond lengths are obtained: Cu-S < Ni-S (HS) < Zn-S. Therefore, it could be expected that the DFT/B3LYP/ B1 level will correctly predict the spin state of the transition metal complexes of R₂dtc. In line with the experiment, Ni(Et₂dtc)₂ and Cu(Et₂dtc)₂ structures are minima in C_{2h} symmetry (Figure 2a). The geometry optimization of the Zn(Et₂dtc)₂ complex in C_{2h} symmetry showed one imaginery frequency (-40 cm^{-1}) . The C_1 structure is more stable by 8.1.kcal/mol. The relaxed structure of $Zn(Et_2dtc)_2$ has a bite angle of A(S1-Zn-S2' = 128° and obviously leans toward tetrahedral symmetry; however, the ultimate boundary case (where A(S1-Zn-S4 = 109°) has not been reached (Figure 2b). The calculated minima of M(Et₂dtc)₂ complexes show trans positions of the ethyl substituents of one dtc ligand in agreement with their X-ray structures. The stabilization of two trans-Et₂dtc ligands in the metal complexes could be explained with a more stable *trans*-Et₂dtc conformation (Figure 1c) than the cis one. The average deviations of the bond lengths from the corresponding experimental values are 0.024 Å for Ni(Et₂dtc)₂, 0.019 Å for Cu(Et₂dtc)₂, and 0.046 Å for Zn(Et₂dtc)₂. The B3LYP/ B1 M-S bond lengths are longer (by 0.04–0.09 Å) than the experimental ones (considering the average experimental M-S

bond length). Zn(Et₂dtc)₂ shows the largest deviation of the calculated geometry data from the experimental data. This difference is due to the intermolecular interactions in the solid state, producing dimer formation. (The metal atom is fivecoordinate.⁴¹) Detailed vibrational investigations on Zn(Et₂dtc)₂ in the solid state and in solution predicted higher molecular symmetry in solution due to the removal of the intermolecular interaction in the crystal. Thus, in solution zinc is fourcoordinate, and the ZnS₄ chromophore polyhedron approaches T_d geometry.⁴² Because of the lack of the fifth Zn-S contact, the Zn(Et₂dtc)₂ geometry in solution is expected to be close to that in the gas phase. The calculations of isolated $M(Et_2dtc)_2$ molecules indicate that all four M-S bond lengths are equalized. Obviously, the observed asymmetrical bidentate M-S bonding is produced mainly from the crystal packing effect (Table 3). The molecular geometry of Cu(Et₂dtc)₂ obtained from the solidstate calculations is in better agreement with the X-ray data. The calculations are performed for the monoclinic unit cell of $Cu(Et_2dtc)_2$ with the dimensions a = 9.907, b = 10.627, and c= 16.591 Å taken from X-ray diffraction analysis.⁴⁰ In contrast to the calculated gas-phase geometry of Cu(Et₂dtc)₂, the periodic DFT calculations, simulating the solid state, predicted different M-S bond lengths, i.e., asymmetrical bonding. On the basis of the reference CCSD calculations and available experimental geometries, the DFT/B3LYP/B1 method is selected as the appropriate one for the theoretical consideration of $R_2 dtc$ (R = H, Me, or Et) and their metal complexes.

3.2. Analysis of the M–R₂dtc Bonding Situation. 3.2.1. Binding Energies. The M–dtc bonding situation and the electron density distribution for AgR₂dtc and M(II)(R₂dtc)₂ (M(II) = Ni(II), Cu(II), or Zn(II); R = Me or Et) were investigated in terms of NBO analysis, EPA, and CDA. The M–S(dtc) binding energy and the most important data for the bonding analysis for the interactions between one R₂dtc ligand and one MR₂dtc

 $Zn(Et_2dtc)_2(C_1)$

Figure 2. Optimized geometries of (a) Ni(Et₂dtc)₂ and Cu(Et₂dtc)₂ and (b) Zn(Et₂dtc)₂ complexes at the B3LYP/B1 level of theory.

TABLE 4: Binding Energy $M-S_2$ (R_2 dtc) (ΔE_b) and Energy Partitioning Analysis of $M-R_2$ dtc Complexes (Bond Length, R, in Å, Energies in kcal/mol)

				EPA (PW91/TZP)					
compound	<i>R</i> (M–S)	$\begin{array}{c}\Delta E_{\mathrm{b}}{}^{a}\\ \mathrm{(B3LYP/}\\ \mathrm{B1(B2)}{}^{b})\end{array}$	$\Delta E_{\rm b}{}^a$	$\Delta E_{ m elstat}$	$\Delta E_{ m orb}$	$\Delta E_{\mathrm{Pauli}}$			
Ni(Me ₂ dtc) ₂	2.252	-190.5 (106.1) ^c	-200.7	-199.1	-118.5	116.9			
Cu(Me ₂ dtc) ₂	2.359	-170.8 (87.2) ^c	-178.1	-184.9	-93.9	100.6			
Zn(Me ₂ dtc) ₂	2.395	-182.5	-188.0	-187.6	-102.1	101.8			
bi-AgMe2dtc	2.594	-171.6	-186.1	-196.4	-65.4	75.7			
uni-AgMe2dtc	2.431	-158.4							
Ni(Et ₂ dtc) ₂	2.253	-188.6 (108.5) ^c	-198.3	-196.9	-118.7	117.3			
Cu(Et ₂ dtc) ₂	2.359	-168.2 (89.4) ^c	-175.7	-182.9	-94.4	101.6			
Zn(Et ₂ dtc) ₂	2.392	-180.5	-185.2	-184.6	-103.3	102.8			
bi-AgEt2dtc uni-AgEt2dtc	2.586 2.429	-171.3 -157.6	-185.4	-195.7	-66.7	76.9			

^{*a*} $\Delta E_b = E(M(R_2dtc)_2) - E(MR_2dtc^+) - E(R_2dtc^-)$ for M = Ni(II), Cu(II), or Zn(II), and $\Delta E_b = E(AgR_2dtc) - E(Ag^+) - E(R_2dtc^-)$. ^{*b*} The B1 basis set is for M(II)(R_2dtc)_2 complexes, and the B2 basis set is for AgR_2dtc complexes; see Computational Details section. ΔE_b at the B3LYP/B1(B2) level are BSSE corrected values. ^{*c*} Available experimental data for ΔE_b are given in brackets; see ref 3 for Ni(Me_2dtc)_2 and Cu(Me_2dtc)_2, ref 44 for Ni(Et_2dtc)_2, and ref 45 for Cu(Et_2dtc)_2.

(or Ag) fragment are given in Table 4. The binding energy obtained from the Gaussian program is calculated with frozen fragment geometries at the complex geometry. Natural atomic charges of metal ions and CDA data, calculated for a series of complexes, Ni(R₂dtc)₂, Cu(R₂dtc)₂, Zn(R₂dtc)₂, and AgR₂dtc, are given in Table 5. The bidentate M(Me₂dtc)₂ structures are minima in C_1 symmetry. (The minima of M(Et₂dtc)₂ structures were discussed in the previous section.) The unidentate AgR₂-dtc complexes are minima in C_{2v} symmetry, and the bidentate AgR₂dtc is a minimum in C_2 symmetry. The bidentate AgR₂dtc complexes are more stable by ~17 kcal/mol than the unidentate ones.

The metal-ligand bonding in R_2dtc complexes is described using the charged fragments $M(R_2dtc)^+ + R_2dtc^-$ for $M = Ni^{2+}$,

TABLE 5: Atomic Charges (q) of Ni(II), Cu(II), Zn(II) and Ag(I) in the M-R₂dtc Complexes Using Natural Population Analysis (at the B3LYP/B1 Level), Hirshfeld Analysis (at the PW91/TZP Level) and Charge Decomposition Analysis (at the B3LYP/6-31G(d,p) Level)^{*a*}

		-						
	с	harge	CDA					
system	q(M) NPA	q(M) Hirshfeld	<i>q</i> [d]	<i>q</i> [b]	<i>q</i> [r]	<i>q</i> [s]		
Ni(Me ₂ dtc) ₂	0.524	0.430	0.713	0.046	-0.233	-0.105		
$Cu(Me_2dtc)_2$	0.867	0.491	0.626	0.044	-0.054	-0.089		
Zn(Me ₂ dtc) ₂	1.298	0.612	0.801	0.034	-0.088	-0.083		
uni-AgMe ₂ dtc	0.474		0.583	0.034	-0.067	-0.070		
bi-AgMe ₂ dtc	0.674		0.867	0.029	-0.131	-0.066		
Ni(Et ₂ dtc) ₂	0.525	0.421	0.714	0.046	-0.238	-0.105		
$Cu(Et_2dtc)_2$	0.867	0.480	0.650	0.045	-0.074	-0.090		
$Zn(Et_2dtc)_2$	1.303	0.600	0.797	0.035	-0.087	-0.085		
uni-AgEt2dtc	0.482		0.625	0.040	-0.075	-0.073		
bi-AgĒt ₂ dtc	0.676		0.870	0.030	-0.133	-0.065		

^{*a*} q[d], donation L \rightarrow M(II); q[b] back-donation M(II) \rightarrow L; q[r], repulsive polarization; q[s] nonclassical rest term.

 Cu^{2+} , or Zn^{2+} and $M^++ R_2 dtc^-$ for $M = Ag^+$ as bonding partners. The bonding situation could be analyzed also using the neutral fragments $M(R_2dtc)^{\bullet} + R_2dtc^{\bullet}$, and the values of the fragment charges should suggest which bonding situation better describes the M–L bonding in the $M(R_2dtc)_2$ complexes. The Hirshfeld approach gives positive charges of $M(R_2dtc)^+$, 0.46e for Ni(R_2 dtc)⁺, 0.44e for Cu(R_2 dtc)⁺, and 0.51e for Zn- $(R_2 dtc)^+$, and negative charges for $R_2 dtc$ (-0.43*e* to -0.51*e*). Thus, the $M(R_2dtc)_2$ complexes appear to be a borderline case of the two bonding situations. It should be mentioned that the Hirshfeld charges are chemically meaningful whereas the NBO model predicts often too large ionic character.43 To describe the bonding situation in the metal complexes of R2dtc, we select the ionic fragments. However, in this case an overestimation of the electrostatic contribution is expected, and it should be taken into account.

First, the binding energies (ΔE_b) of M²⁺ with one R₂dtc⁻ ligand are calculated. $\Delta E_{\rm b}$ (absolute value) decreases in the order $Ni(R_2dtc)^+ > Cu(R_2dtc)^+ > Zn(R_2dtc)^+$ in agreement with the increasing M-S bond length order. The evaluation of the M-L binding energy in the complexes with two R₂dtc⁻, however, is more complicated. The M-L binding energy (absolute value) calculated on the basis of the charged fragments decreases in the order Ni-S₂ (Ni(R₂dtc)₂) > Zn-S₂ (Zn(R₂dtc)₂) > Ag-S₂ $(AgR_2dtc) > Cu-S_2$ $(Cu(R_2dtc)_2)$ (Table 4). The average metal-sulfur bond-dissociation enthalpies $(D_m)(M-S)$ in M(Me₂ $dtc)_2$ have been experimentally derived, and the larger D_m (Ni-S) value as compared to the $D_m(Cu-S)$ value correlates with the calculated ΔE_b trend: Ni-S(R₂dtc) > Cu-S(R₂dtc).^{3,44,45} The M-S binding energy slightly depends on the Me/Etsubstituent (~2 kcal/mol), and larger M-S bond strength is found for R = Me as compared to $R = Et_2dtc$. Although the binding energies from EPA (ADF) and the dissociation energies obtained from the Gaussian program are not equivalent, both approaches give the same trend of binding energies for M(R2dtc)₂ complexes (Table 4). According to the calculations, the electrostatic attraction between the charged fragments in all complexes studied has a predominant contribution to the $M-S_2(R_2dtc)$ bonding. Very important information about the covalent bonding situation comes from the orbital term $\Delta E_{\rm orb}$. The orders of the electrostatic attractions and the orbital interactions follow the trend of the total binding energy, and obviously both contributions are responsible for the binding energy order. A survey of the metal atomic charges of M(R₂ $dtc)_2$ reveals that they increase in the order Ni(II) < Cu(II) <

Zn(II). Lower metal atomic charge indicates larger $M \rightarrow L$ charge transfer and hence more covalent bond. Our results show that the order of the evaluated $M \rightarrow L$ charge transfer in Cu- $(R_2dtc)_2$ and Zn $(R_2dtc)_2$ does not correlate with the order of the orbital interaction. As discussed in the literature, the information obtained from the atomic charges must be used with caution, and a partitioning of the interaction energy is advisable when the chemical bond is analyzed in terms of covalent and electrostatic contributions.⁴⁶

The calculated values of the Pauli repulsion energy give information about the metal-ligand interactions. The Pauli repulsion between the charged fragments in $M(R_2dtc)_2$ is the largest one for the Ni(II) complexes and decreases in Zn(II) and Cu(II) complexes.

A strong Ag–S bonding (comparable with Zn–S(R₂dtc)) is found for the bidentate AgR₂dtc complexes, which arises mainly from the large electrostatic attraction contribution. Among the complexes studied, AgR₂dtc shows the weakest orbital interaction and Pauli repulsion interaction.

To estimate the σ -donation (metal \leftarrow ligand) and the π -backdonation (metal \rightarrow ligand) contributions, the M-S₂(R₂dtc) bonding is studied in terms of donor-acceptor interaction between the closed-shell ligand and the closed-shell metal fragments using the CDA partitioning scheme.³⁶ The CDA data are given in Table 5. Among the bis-M(R₂dtc)₂ complexes, the largest donation is calculated for the Zn(II) complex, followed by the Ni(II) and Cu(II) complexes. The $L \rightarrow M$ donation trend could be understood by examining the radii of the valence sand d-orbitals. The electronic ground states of Ni(II), Cu(II), and Zn(II) ions are d^8s^0 , d^9s^0 , and $d^{10}s^0$, their valence s-orbitals serve as acceptor orbitals, and the valence d-orbitals are the donor orbitals. The radius of the valence s-orbitals increases in the order Zn(1.200 Å) < Ni(1.276 Å) < Cu(1.374 Å), which is in agreement with the decreasing donation in the same order. As the π -back-donation strongly depends on the bond length, the π -back-donation interaction increases with decrease of the bond distances in the order Zn-S > Cu-S > Ni-S. However, the back-donation contributions were found to be very small, and the donation contributions appeared dominant.

The repulsion interaction estimated by CDA is in agreement with the calculated Pauli repulsion above. The negative values for the repulsive polarization *q* indicate the depleted charge from the overlapping area of the occupied orbitals. The largest value of the occupied/occupied repulsion term for Ni–R₂dtc bonding reveals a significant charge organization. The calculations suggest that for the Ni(II) complex the d_{xy} orbital is unoccupied and for the Cu(II) complex the d_{xy} orbital contains an unpaired d-electron. The minimal occupation of the d_{xy} orbital along M–S bonding decreases the d_σ–s_σ repulsion during the M–R₂dtc interaction.

The orbital energies of Ni(II), Cu(II), and Zn(II) shown in Figure 3 are also important for a complete understanding of the M(II)-R₂dtc bonds. The interaction of the filled S(dtc) σ -donor orbital with the filled (d_{σ}) metal atomic orbital leads to σ -repulsion. In general, sd_{σ} mixing in the metal center shifts the electron density away from the M-S bond to the *xy* plane, decreasing the σ -repulsion and allowing for a shorter bond. The degree of the s-d_{σ} mixing depends on the s-d_{σ} gap. The Ni-(II) ion, with the smallest s-d_{σ} energy gap, forms the shortest Ni-S bond lengths, whereas the Zn(II) ion with the largest s-d_{σ} energy gap gives the longest Zn-S bond lengths (Table 3).

3.3. Formation Energies. The metal complexes of R_2 dtc reveal their interesting chemical behavior in solution, and therefore we extended our theoretical studies to include calcula-

Figure 3. Orbital energy diagram for the highest occupied (d) and lowest unoccupied (s) atomic orbitals for Ni^{2+} , Cu^{2+} , and Zn^{2+} .

TABLE 6: Calculated Formation Reaction Energies (ΔE_r) and Gibbs Free Reaction Energies (ΔG_r) for the Gas Phase and Solution of M–R₂dtc Complexes (Energies in kcal/mol)

compound	$-\Delta E_{\rm r}^{\rm gs}$	$-\Delta E_{ m r}^{ m sol}$	$-\Delta G_{ m r}^{ m sol}$
Ni(Me ₂ dtc) ₂	37.3	60.0/53.8 ^a	71.4
$Cu(Me_2dtc)_2$	36.7	57.2/50.9 ^a	69.1
$Zn(Me_2dtc)_2$	32.9	46.5/43.7 ^a	64.1
bi-AgMe ₂ dtc	19.5	12.7^{a}	
uni-AgMe2dtc	3.1	6.9 ^a	
$Ni(Et_2dtc)_2$	38.1	60.3 ^{<i>a</i>}	
$Cu(Et_2dtc)_2$	38.0	57.4 ^a	
$Zn(Et_2dtc)_2$	34.1	50.3 ^a	
bi-AgEt2dtc	19.8	15.6 ^a	
uni-ĀgEt2dtc	2.1	7.9^{a}	

^a Continuum solvation calculations without geometry optimization.

tions of solvated systems. The formation reaction energies (ΔE_r) of M(R₂dtc)₂ (M = Ni(II), Cu(II), or Zn(II)) as well as of uniand bidentate AgR₂dtc (R = Me or Et) complexes are calculated in the gas phase and solution. The solvent effects are estimated using a polar solvent (DMSO). In the case of a small specific interaction of the solvent (microsolvation), the continuum solvation results obtained for DMSO should be valid for other polar solvents as well. From the other side, it is expected that the energetic results valid for a nonpolar solvent are similar to those in the gas phase because the geometry in a nonpolar solution is slightly affected and the solvation contribution is insignificant. The formation reaction energies of M–R₂dtc complexes in the gas phase and solution are calculated according to the following reaction scheme

$$M(NO_3)_2(g/s) + 2NaR_2dtc(g/s) \rightarrow M(R_2dtc)_2(g/s) + 2NaNO_3(g/s)$$
(2)

$$AgNO_3(g/s) + NaR_2dtc(g/s) \rightarrow AgR_2dtc(g/s) + NaNO_3(g/s)$$
 (3)

All species of the reactions with $R = Me_2dtc$ are optimized in solution, and the calculations are performed with minima structures. It is found that continuum solvent interaction produces insignificant shortening of the M–S bond length, visible shortening of the C1–N1 bond length (~0.012 Å), and elongation of the C1–S (0.010 Å) and N1–C2 (~0.04 Å) bond lengths. For the gas phase and solution, the formation reaction energies, ΔE_r , given in Table 6, are negative, indicating that the complex formation process is thermodynamically favored. The formation reaction energies (absolute values) decrease in the order Ni(Me₂dtc)₂ > Cu(Me₂dtc)₂ > Zn(Me₂dtc)₂. The solvent effect lowers the ΔE_r value of the M(R₂dtc)₂ complexes by 13–23 kcal/mol. In addition to the ΔE_r value in solution, we computed the Gibbs reaction energies, ΔG_r (Table 6). The inclusion of the thermochemical corrections does not change the formation reaction energy order; it only leads to more negative energies by 11–17 kcal/mol. The calculated formation reaction energies are in agreement with the available experimental data for Cu(Me₂dtc)₂ and Ni(Me₂dtc)₂ complexes, revealing a more negative standard molar enthalpy of formation in solution for the Ni(II) complex (-34.9 kcal/mol) than that for the Cu(II) complex (-20.4 kcal/mol).² The order and the difference of the calculated ΔH_r values for Cu(II) and Ni(II) complexes follow the experiment, the calculated ΔH_r enthalpies being ~33 kcal/mol more negative. However, it is difficult to compare the results closely because we calculate specific substitution reactions while in the experimental analysis a global modeling of a complex set of reactions has been performed.

The solvation energies of Ag(I)R₂dtc and M(II)(Et₂dtc)₂ are calculated by means of single-point continuum solvation calculations because the geometry changes produced by the solvation of M(II)(Me₂dtc)₂ are found to be small (~0.2 kcal/ mol). As seen from Table 6, the geometry changes in solution lead to an increase of the formation reaction energies (obtained from single-point continuum solvation calculations) of the M(II)-(Me₂dtc)₂ complexes up to 6.3 kcal/mol, but the order of the calculated $\Delta E_{\rm r}$ value in solution is the same. The ethyl substituent does not change the order of the formation reaction energies obtained for M(II)(Me₂dtc)₂. According to the $\Delta E_{\rm r}$ calculations in the gas phase and solution, slightly larger stabilization is suggested of M(II)(Et₂dtc)₂ complexes than that of M(II)(Me₂dtc)₂, and this result correlates with experimental data showing that the metal-sulfur bond-dissociation enthalpies of $D_{\rm m}({\rm M-S})_{\rm Et}$ are larger than that of $D_{\rm m}({\rm M-S})_{\rm Me}$.³ This finding, however, is not in line with the M-S bonding strengths. It should be remarked that the available experimental thermochemical data for $Ni(R_2dtc)_2$ and $Cu(R_2dtc)_2$ complexes can be interpreted in various ways depending on the purposes for which these data are required.^{2,3} Metal-ligand binding energies can in principle be considered in the context of bond-energy schemes or in terms of bond-dissociation energies, and the applicabilities of these approaches are quite different. The bondenergy schemes are not easily applied to coordination compounds, whereas the dissociation energies are not a direct measure of the binding energies due to the reorganization energies of the radicals. For that reason, the explicit comparison of the calculated energetic and thermochemical data with the experiment is complicated and should be performed with caution.

The comparison between uni- and bidentate AgR_2dtc reaction formation energies in the gas phase and solution reveals that ΔE_r is larger for the bidentate species. It is interesting to note that the solvent effect produces a decrease of the reaction energy for the bidentate AgR_2dtc and an increase of the reaction energy for the unidentate AgR_2dtc . The calculations predict similar reaction energies for the bidentate $AgMe_2dtc$ and $AgEt_2dtc$ in the gas phase, and it is larger for $AgEt_2dtc$ in solution.

As was found above, the calculated larger reaction energy (absolute value) of Ni(R₂dtc)₂ than that of Cu(R₂dtc)₂ is in agreement with the experimental formation enthalpies of the complexes. However, this finding does not correlate with the stability order of Ni(Et₂dtc)₂ < Cu((Et₂dtc)₂ established on the basis of metal exchange reactions between divalent metal ions and their dithiocarbamate complexes in DMSO.¹ Because the two experimental techniques provide different results for the M(R₂dtc)₂ stability order, it could be suggested that (1) the experiments need to be refined or (2) specific solvent interactions have a decisive effect on M(R₂dtc)₂ stability. The calculated formation reaction energies in solution indicate that among the four metals in the environment Ni(II) is the metal that most likely should inhibit the transformation reaction of dtc in soil followed by Cu(II), Zn(II), and Ag(I).

3.4. Vibrational Study of the Bonding Type in M-R₂dtc Complexes (M = Ag(I), Ni(II), Cu(II), or Zn(II)). The precise characterization of the metal complexes of R2dtc in the environment requires vibrational criteria, capable of discerning the bonding type in the M-dtc complexes when X-ray diffraction data are not available. Previously, the M-dtc bonding type was suggested using the popular Bonati-Ugo method, based on experimentally derived vibrational criteria.47 However, detailed comparison of the X-ray diffraction data for M(II)(R2dtc)₂ and M(III)(R₂dtc)₂ showed that the dtc ligands, irrespective of the host complex or the ligand bonding type, are at sites of C_1 symmetry, thus ruling out the possibility of detecting the ligand bonding type from the solid-state vibrational spectra.⁴⁸ The present vibrational study is based mainly on DFT calculations and aims first at reliable assignment of the vibrational molecular modes and second at a better understanding of the established correlation between the $\nu_{as}(CS)$ vibrational behavior and the metal-ligand bonding type. For that purpose, a number of $M-R_2$ dtc model complexes are considered: M = Ag(I), Cu-(II), Ni(II), or Zn(II); R = Me or Et. Uni- and bidentate bonding types of the dtc ligands are modeled: (i) for $Ag(R_2dtc)$ in a ratio of $M/R_2dtc = 1:1$ and (ii) for $Cu(R_2dtc)_2$ in a ratio of M/R_2 dtc = 1:2. Both symmetrical and asymmetrical bidentate bonding of the dtc ligand (with equivalent and nonequivalent M-S bond lengths) are simulated and studied with the help of model complexes. The effect of the molecular symmetry, the coupling of the ligand modes, and the effect of the N-substituents on selected characteristic vibrational modes are discussed. A new approach was applied to study the crystal packing effect on the complex vibrational pattern: Periodic DFT calculations (using the VASP program) are performed for Cu(Et₂dtc)₂, and the frequencies obtained are compared with the data calculated for the isolated complex.

3.4.1. Vibrational Analysis of $M(Et_2dtc)_2$ (M = Ni(II), Cu-(II), or Zn(II)). First, frequency calculations are performed for complexes with known crystal and molecular structures (Ni-(Et₂dtc)₂, Cu(Et₂dtc)₂, and Zn(Et₂dtc)₂) with the purpose of reliable interpretation of the observed vibrational spectra. The M(II)-Et₂dtc bonding type in these structures is symmetrical bidentate. The full list of calculated and experimental spectra of the M(Et₂dtc)₂ complexes is given in Table 1S of the Supporting Information. Selected calculated and experimental vibrational frequencies of M(Et₂dtc)₂ complexes discussed in detail as to the ligand bonding type are given in Table 7. In general, DFT/B3LYP/B1 calculated frequencies were found to be in reasonable agreement with the observed vibrational spectra of M(Et₂dtc)₂ complexes.

The frequency calculations for Ni(Et₂dtc)₂ and Cu(Et₂dtc)₂ structures are performed at the optimized geometry in C_{2h} symmetry (Table 7). Because the ν (CS) modes were considered as indicative for the metal—ligand bonding type, below we mainly discuss its vibrational behavior. Two bands due to the ν_{as} (CS) modes and two bands due to the ν_{s} (CS) modes should appear for M(Et₂dtc)₂ in the 1060–920 and ~900–800 cm⁻¹ regions, respectively.⁴⁸ For C_{2h} symmetry, one of the ν_{as} (CS) vibrations is IR-active (B_u), and the other one is Raman-active (B_g). Hence, in the IR spectra of Ni(Et₂dtc)₂ and Cu(Et₂dtc)₂, only one ν_{as} (CS) band should appear. On the basis of the calculations, the intense IR bands observed at 993 cm⁻¹ for Ni(Et₂dtc)₂ and at 996 cm⁻¹ for Cu(Et₂dtc)₂ are assigned to the

TABLE 7: Calculated (Scaled, Scaling Factor = 0.985) Frequencies, IR Intensity (I_{IR}) and Raman Activity (A_{Ra}) of Ni(Et₂dtc)₂, Cu(Et₂dtc)₂, Zn(Etdtc)₂ at B3LYP/B1 Level and Comparison with Experimental IR Spectra

	Ni(Et ₂ dtc) ₂			$Cu(Et_2dtc)_2$ $Zn(Et_2dtc)_2$									
	calcd (C_{2h})		(calcd (C_1)		calcd (C_{2h})		expt calcd (C_1)		(C_1)		
expt	frequency	I _{IR} /A _{Ra}	expt	frequency ^a	frequency ^b	I _{IR} /A _{Ra}	frequency ^c	I _{IR} /A _{Ra}	solid	$sol^{CH_2Cl_2}$	frequency	$I_{\rm IR}/A_{\rm Ra}$	assignment
	1518(Ag)	0/65		1478	1515	39/56	1514 (Ag)	0/59			1515	0/59	$\delta(CH_3) + \nu(SC-N)$
1495vs	1514(Au)	677/0	1505s	1472	1511	588/2	1511 (Au)	616/0	1508vs	1500vs	1513	390/13	$\delta(CH_3) + \nu(SC-N)$
	1459(Ag)	0/40		1418	1455	65/33	1454 (Ag)	0/50			1450	5/7	$\nu(\text{SC}-\text{N})^{\text{s}} + \delta(\text{CCH})$
1435 m	1458(Au)	374/0	1435s	1418	1453	307/9	1454 (Au)	378/0	1435s	1437vs	1450	359/6	$\nu(\text{SC}-\text{N})^{as} + \delta(\text{CCH})$
993s	995(Bu)	40/0	996s	996	991	44/0	989 (Bu)	44/0	995s	989s	982	36/4	$\nu(CS)_{as}$
972sh	987(Bg)	0/20	974sh	974	982	0/37	981 (Bg)	0/41	983 sh		981	36/3	$\nu(CS)_{as}$
916 m	908(Bu)	20/0	916 m	905	907	22/0	907 (Bu)	23/0	916 m	913s	906	21/6	$\delta(\text{CCN}) + \nu(\text{CC})$
	906(Bg)	0/18		902	904	0/28	904 (Bg)	0/31	906sh		906	21/6	$\delta(\text{CCN}) + \nu(\text{CC})$
	846(Ag)	0/7		841	843	6/3	843 (Ag)	0/3	850 m	846s	840	25/2	$\nu(CS)_{s} + \delta(SCS) + \delta(CCH)$
854 m	846(Au)	32/0	848s	838	842	41/1	842 (Au)	50/0	843m		839	7/1	$\nu(CS)_s + \delta(SCS) + \delta(CCH)$
391s	378(Au)	126/0		355	375	65/5	364 (Ag)	0/16	400vs	392vs	390	76/0	$\nu(M-S)$
381w	368(Ag)	0/2	360s	351	367	47/7	362 (Au)	107/0			379	0/2	$\nu(M-S)$
	361(Bu)	2/0	327 m	314	321	2/0	315 (Au)	29/0	335 m	333 m	320	31/1	$\delta(CCN) + \nu(M-S)$
	331(Au)	1/0		312	319	17/0	311 (Ag)	0/4			314	0/2	$\delta(CCN) + \delta(SCN) + \nu(M-S)$

^{*a*} Unscaled frequencies from periodic DFT calculations. ^{*b*} Asymmetrical bonding: Cu-S = 2.377, 2.330, 2.300, and 2.330 Å. ^{*c*} Symmetrical bonding: Cu-S = 2.359 Å. Au, Ag, Bu, and Bg represent the irreducible representations of the normal modes in C_{2h} molecular symmetry.

TABLE 8:	Calculated Frequencies (S	caling Factor = 0.98	5), IR Intensity	$(I_{\rm IR})$, and Raman	Activity (A _{Ra}) of AgMe ₂ dtc and
AgEt ₂ dtc a	t the B3LYP/B2 Level and	Comparison with th	e Experimental	Raman Spectra		

			AgN	Ie ₂ dtc				AgE	t ₂ dtc	
unide	ntate	bident	tate		$\exp(R_{\rm a})^{50}$		unider	ntate	bidentate	
frequency	$I_{\rm IR}/A_{\rm Ra}$	frequency	$I_{\rm IR}/I_{\rm Ra}$	assignment	10 ⁻⁶ (uni-)	10 ⁻⁵ (bi-)	frequency	$I_{\rm IR}/A_{\rm Ra}$	frequency	$I_{\rm IR}/A_{\rm Ra}$
1504	117/64	1513	158/3	$\delta(CH_3) + \nu(CN)$	1521 m	1514 m	1490	69/52	1504	107/20
1462	5/32	1465	26/22	$\delta(CH_3)$	1438w	1448 m	1471	9/18	1472	1/16
1377	132/154	1378	232/8	$\nu(CN) + \delta(CH_3)$	1386vs 1367sh	1386vs	1425	112/82	1435	133/8
1250	57/93	1274	64/3	$\nu(NC_R) + \delta(CH_3)$	1238vw		1210	51/87	1212	62/1
1133	94/138	1152	35/11	$\delta(\text{CNC}) + \delta(\text{HCN})$	1148 m	1148s	1134	90/153	1148	66/8
1055	18/4	1054	23/0	$\delta(C_RNC)$	1035vw	1045 m	1063	20/4	1067	23/3
							1002	20/139	992	3/12
977	84/457	951	129/10	$\nu(C=S)$ $\nu(C-S)_{as}$	933w	935w	968	41/203	962	54/7
				$\delta(\text{CCN}) + \nu(\text{CS})$			904	16/131	894	54/7
882	15/52	877	0/4	$\nu(C-S)_s + \nu(C_RN)$		850w	827	25/17	833	13/2
573	6/10	574	9/13	$\delta(C_R N C_R) + \nu(CS)$	559w	563 m	579	0/0	589	0/0
438	12/5	431	8/12	$\delta(\text{CNC}) + \delta(\text{SCS})$	440vw	441 m	488	6/8	491	7/0
323	14/131	361	4/3	$\nu(M-S)$	340vw	340 m	337	4/48	378	2/7

 $\nu_{\rm as}(\rm CS)$ vibrations. However, shoulders at 972 cm⁻¹ for Ni(Et₂dtc)₂ and at 974 cm⁻¹ for Cu(Et₂dtc)₂ are observed in the solidstate IR spectra of the complexes, and the origin of these shoulders is not clearly understood. It was previously accepted that splitting of the main $\nu_{as}(CS)$ absorption up to 20 cm⁻¹ is indicative of asymmetrical dtc bonding.47 However, it was further shown that due to the absence of a degenerate mode in the highest possible symmetry of the ligand bonding types $(C_{2\nu})$ no band splitting should be expected down to C_1 symmetry in the series $C_{2v}-C_2-C_s-C_1$, and hence the splittings observed come from interligand or intermolecular couplings.48 For a better understanding of the observed shoulder of the main $v_{as}(CS)$ IR absorption peak in the solid state, we performed a series of calculations modeling in addition asymmetrical, uni- and bidentate bonding types. First, we simulated asymmetric bonding for Cu(Et₂dtc)₂, with different Cu-S bonds, and a planar CuS₄ fragment, and selected calculated frequencies are presented in Table 7. The calculated two components of $\nu_{as}(CS)$ absorption differ by up to 10 cm⁻¹ in both C_{2h} (symmetrical bonding) and C_1 (asymmetrical bonding) structures of Cu(Et₂dtc)₂. The calculated IR intensities and Raman activities for the last case revealed that one of the vibrational modes is IR-active (991 cm^{-1}), and the second one is Raman-active (982 cm^{-1}). The same situation was predicted for the symmetrical bonding (all Cu-S bonds are equal, 2.359 Å), and therefore the splitting of $v_{as}(CS)$ absorption in the 1060–920 cm⁻¹ region (if observed) could not be due to the asymmetrical M-S bonding as previously accepted by Bonati and Ugo.47,48 Searching for a reliable explanation of the observed splitting, we performed additional geometry and frequency calculations simulating the asymmetrical bonding situation in the solid state with the nonplanar CuS₄ fragment as obtained from X-ray diffraction analysis. The solid-state structure simulation of Cu(Et₂dtc)₂ confirmed the splitting of the $v_{as}(CS)$ band; calculated frequencies are at 996 and 974 cm⁻¹ (Table 7). The solid-state calculations revealed that due to the broken CuS₄ planarity the Raman-active $\nu_{as}(CS)$ component becomes also IR-active, and as a result a shoulder appears next to the main $\nu_{as}(CS)$ IR band. Hence, the splitting of the $v_{as}(CS)$ band (<20 cm⁻¹) in the 1060-920 cm⁻¹ region (when observed) does not indicate M-S asymmetrical bonding in transition metal dtc complexes but rather the nonplanar CuS₄ fragment produced from intermolecular contacts in the solid state. In solution (CH₂Cl₂), the intermolecular contacts are not present, and the IR spectra of $Ni(Et_2dtc)_2$ and $Cu(Et_2dtc)_2$ complexes are in line with the enhanced complex symmetry and exhibit only one band in the

Figure 4. Optimized structures and calculated IR and Raman spectra of (a) unidentate AgMe₂dtc and (b) bidentate AgMe₂dtc.

 $\nu_{as}(CS)$ region.⁴⁸ Such a vibrational behavior was predicted from our calculations of the isolated Ni(Et₂dtc)₂ and Cu(Et₂dtc)₂ complexes.

As already mentioned, in the relaxed $Zn(Et_2dtc)_2$ structure the angle $A(S1-Zn-S2') = 128^{\circ}$, and the symmetry leans toward tetrahedral, but the ultimate boundary case with $A(S1-Zn-S4) = 109^{\circ}$ is not achieved. The gas-phase frequency calculations at the optimized geometry of $Zn(Et_2dtc)_2$ revealed two IR-active $\nu_{as}(CS)$ vibrations at the same wavenumbers (982 cm⁻¹), and therefore only one band should appear in the IR spectrum of isolated Zn(Et₂dtc)₂. The prediction for the isolated Zn(Et₂dtc)₂ molecule is consistent with the solution spectrum pattern of Zn(Et₂dtc)₂ where intermolecular interactions are absent: One ν_{as} (CS) band is observed at 989 cm⁻¹ (Table 7). In the solid-state spectrum, however, one band at 995 cm⁻¹ and a pronounced shoulder at 983 cm⁻¹ were observed. The presence of two bands in the ν_{as} (CS) region in the solid-state spectrum of Zn(Et₂dtc)₂ is explained by the presence of intermolecular

TABLE 9: Selected Calculated Frequencies (Scaling Factor = 0.985) and IR/Raman Intensities (in Brackets) of Me₂dtc, Me₂dtc⁻, and Cu(Me₂dtc)₂ for Different Molecular Symmetries at the B3LYP/B1 Level of Theory

Me ₂ dtc	Me ₂ dtc ⁻	bidentate Cu	$(Me_2dtc)_2$	unidentate Cu(Me ₂ dtc) ₂	
C_1	C_1	D_{2h}	C_1	C_1	assignment
1517 (157)	1499 (14)	1523 Ag (0/4)	1537 (0/8)	1519 (123/278)	$\delta(CH_3) + \nu(CN)$
		1519 B _{3u} (705/0)	1534 (540/0)	1514 (702/77)	
1388 (216)	1333 (136)	1401 A _g (0/7)	1415 (0/33)	1397 (17/180)	$\nu(CN) + \delta(CH_3)$
		1396 B _{3u} (699/0)	1412 (416/0)	1392 (586/197)	
1010 (102)	972 (320)	990 B _{2u} (89/0)	979 (88/0)	962 ^a (20/867)	$\nu_{\rm as}(\rm CS)$
		978 $B_{1g}(0/71)$	967 (0/63)	960 ^a (16/4089)	$\nu_{\rm as}(\rm CS)$
913 (74)	886 (4/)	$885 A_{g}(0/5)$	901 (0/32)	874 ^b (6/144)	$\nu_{\rm s}({\rm CS}) + \delta({\rm SCS})$
		885 B _{3u} (2/0)	901 (1/0)	873 ^b (4/551)	$\nu_{\rm s}({\rm CS}) + \delta({\rm SCS})$
		351 A _g (0/7)	363 (0/11)	381 (3/3)	$\nu(CuS)$
		350 B _{3u} (117/0)	361 (122/0)	302 (0/160)	$\nu(CuS)$
		291 B _{2u} (2/0)	308 (2/0)		
		$260 B_{1g} (0/7)$	285 (0/14)		

^{*a*} ν (C=S) ^{*b*} ν (C-S)

coupling of the vibrational modes of the dimer $Zn(Et_2dtc)_2$ units (as obtained from X-ray diffraction analysis), producing nondegenerate frequencies for the two IR-active $\nu_{as}(CS)$ vibrations.⁴²

The strong bands observed in the solid-state IR spectra of Ni(Et₂dtc)₂ at 854 cm⁻¹, of Cu(Et₂dtc)₂ at 848 cm⁻¹, and of Zn(Et₂dtc)₂ at 850 and 843 cm⁻¹ are assigned to ν_s (CS) modes. As seen from Table 7, the vibrational behavior of ν_s (CS) modes for the complexes studied follows that of ν_{as} (CS) ones discussed above.

3.4.2. Vibrational Patterns of Uni- and Bidentate dtc Bonding in MR_2dtc (M = Ag(I) or Cu(II); R = Me or Et). First, the vibrational patterns of uni- and bidentate bonding of dtc were studied in a 1:1 model for AgR₂dtc complexes (R = Me or Et). The vibrational analysis was mainly focused on the positions and the IR intensities and Raman activities of $\nu(N-CS_2)$, ν_{as} -(CS), ν_s (CS), and ν (AgS) frequencies as potential indicators of the bonding type of the dtc ligand. Selected calculated vibrational frequencies of the AgR₂dtc complexes are given in Table 8. Full vibrational analysis was performed, and the data are given in the Table 2S of the Supporting Information. The optimized structures and the calculated IR and Raman spectra of uni- and bidentate AgMe₂dtc are given in Figure 4.

The ν (N–CS₂) frequency behavior in the M–dtc complexes was used previously (i) to predict the M-dtc bonding type (unior bidentate) and (ii) to trace the effect of the N-substituent on the M–L interaction strength: Higher ν (N–CS₂) frequencies of M(Et₂dtc) in comparison with that of M(Me₂dtc) have been related to stronger M-Et₂dtc interactions.^{49,50} We will show below that both correlations are doubtful. According to the model calculations for both uni- and bidentate bondings, the ν (N-CS₂) and δ (CH₃) modes remain strongly coupled, ruling out the possibility of finding correlation and estimating the ligand bonding type (the bands at 1504/1377 and 1490/1425 cm^{-1} for unidentate and 1513/1378 and 1504/1435 cm^{-1} for bidentate AgMe₂dtc and AgEt₂dtc). The calculations predict that the ν (N-CS₂) vibrations of HMe₂dtc and HEt₂dtc should appear at 1388 and 1439 cm⁻¹, respectively. Obviously, the higher ν -(N-CS₂) frequency (second one) of Et₂dtc could not originate from stronger $M-Et_2$ dtc interaction, as accepted previously; it is rather an intrinsic ligand property caused by the N-substituent (Me or Et). Hence, the position of the ν (N–CS₂) frequencies could not be used to distinguish the uni- and bidentate bonding types as well as to estimate the M-dtc interaction strength. Our calculations revealed, however, that the Raman activity of the ν (N-CS₂) band varies significantly going from uni- to bidentate AgR₂dtc bonding. For unidentate AgR₂dtc complexes, the Raman activity of the $\nu(N-CS_2)$ vibration is high, and it significantly decreases for the bidentate AgR₂dtc complexes. Therefore, the Raman activity of the ν (N–CS₂) frequency could be used to discern uni- and bidentate bonding in AgR₂dtc.

DFT frequency calculations of unidentate AgR₂dtc complexes predict the ν (C=S) and ν (C-S) vibrations to appear at 977/ 882 cm⁻¹ for R = Me and at 968/827 cm⁻¹ for R = Et (Table 8). Conversely to the common expectation, the lower ν (C=S) and higher $\nu(C-S)$ frequencies for AgMe₂dtc than those for AgEt₂dtc should mean stronger $Ag-S_2(Me_2dtc)$ bonding, in agreement with the predicted binding energies (Table 4). In the case of unidentate bonding in AgR2dtc, the calculations suggest $\Delta(\nu_{C=S} - \nu_{C-S}) = 94 \text{ cm}^{-1}$ for R = Me and $\Delta(\nu_{C=S} - \nu_{C-S})$ = 141 cm⁻¹ for R = Et. It should be noted that for AgMe₂dtc the ν (C=S) and ν (C-S) frequencies are consecutive, whereas for AgEt₂dtc the δ (CCN) vibration appears between the ν (C= S) and the ν (C–S) frequencies and makes an impression of ν -(C=S) band splitting. A symmetrical bidentate bonding in AgR₂dtc produces ν_{as} (CS) and ν_{s} (CS) vibrations at 951 and 877 cm^{-1} for R = Me and at 962 and 833 cm^{-1} for R = Et (Table 8). As compared to the unidenate AgR₂dtc bonding, the bidentate one gives slightly smaller values of $\Delta(\nu_{as} - \nu_s) = 75 \text{ cm}^{-1}$ for R = Me and 129 cm⁻¹ for R = Et. According to the calculations, the $v_{as}(CS)$ vibration is strong to medium in the IR spectrum and weak in the Raman spectrum, whereas the $v_s(CS)$ vibration is only Raman-active for R = Me and both IR- and Ramanactive for R = Et. Like unidenate AgEt₂dtc, for bidentate AgEt₂dtc, the δ (CCN) vibration should appear between the ν_{as} (CS) and the $\nu_s(CS)$ vibrations (Table 8). In summary, our DFT vibrational analysis predicted one band due to the ν (C=S) of unidentate AgMe₂dtc bonding or one due to the $v_{as}(CS)$ of bidentate AgMe₂dtc bonding in the 1060–920 cm⁻¹ region; the ν (C=S) frequency is upshifted by 6–27 cm⁻¹ than ν_{as} (CS) one. Therefore, the number of the bands in this region is not indicative of uni- or bidentate bonding in AgR2dtc. In the 900-800 cm⁻¹ region, one ν (CS) band for uni- or one ν _s(CS) band for bidentate AgR₂dtc is expected at nearby positions.

The calculations suggested further that important vibrational characteristic that can be used to discern uni- and bidentate bonding in the 1060–920 cm⁻¹ region is the Raman activity of the ν (CS) band: It is very high for the unidentate AgR₂dtc bonding (ν (C=S) vibration) and low for the bidentate AgR₂dtc bonding (ν_{as} (CS)) (Figure 4). Therefore, Raman and surface-enhanced Raman spectroscopy have been applied successfully to distinguish uni- and bidentate geometries of ziram on a silver surface.⁵¹ It should be mentioned that the Raman activity of the bands due to the bending HCN and CNC vibrations in the 1130–1150 cm⁻¹ region is also significant for unidentate complexes and strongly decreases in bidentate ones (Figure 4).

Figure 5. Optimized structures and calculated IR and Raman spectra of (a) unidentate Cu(Me₂dtc)₂ and (b) bidentate Cu(Me₂dtc)₂.

The ν (AgS) frequencies of unidentate AgR₂dtc complexes, calculated at 323 cm⁻¹ (R = Me) and 337 cm⁻¹ (R = Et), are at lower frequencies than those of bidentate AgR₂dtc complexes (361 cm⁻¹ (R = Me) and 378 cm⁻¹ (R = Et)). The IR intensity of ν (AgS) is low. However, high Raman activity of the ν (AgS) frequency for unidentate bonding and low Raman activity for bidenate AgR₂dtc bonding are found (Figure 4). Hence, the ν -(AgS) frequency and its Raman activity can also be used as indicators of the dtc bonding type in the metal complexes.

Further, the vibrational behavior of uni- and bidentate bonding of R₂dtc is studied for Cu(II) dtc complexes, using Cu(Me₂dtc)₂ in the Cu/Me₂dtc = 1:2 ratio. The calculated ν (N-CS₂), ν (CS), and ν (CuS) frequencies of Me₂dtc, Me₂dtc⁻, and Cu(Me₂dtc)₂ are presented in Table 9. The calculated IR and Raman spectra of uni- and bidentate Cu(Me₂dtc)₂ are given in Figure 5. To estimate the effect of molecular symmetry on the vibrational pattern, the vibrational calculations are performed for bidentate bis-Cu(Me₂dtc)₂ in the highest D_{2h} and lowest C_1 symmetries. The bidentate $Cu(Me_2dtc)_2$ complex in D_{2h} and C_1 symmetries reveals a planar S-C-N-C fragment. The more stable C_1 structure (by 1 kcal/mol) is a minimum, and it differs from the D_{2h} structure by the asymmetrical location of the CH₃ groups. In that case, the bidentate $Cu(Me_2dtc)_2$ bondings in D_{2h} and C_1 symmetries revealed the same trend of $\nu(N-CS_2)$, ν -(CS), and ν (CuS) frequencies and intensities. On passing from Me₂dtc and Me₂dtc⁻ to the bidenate Cu(Me₂dtc)₂ bonding, the ν (N-CS₂) frequency is blue-shifted, indicating an increase of the carbon-nitrogen double bond character. Because the Cu- $(Me_2dtc)_2$ complex consists of two ligands, pairs of $\nu(N-CS_2)$, $\nu(CS)_{as}$, $\nu(CS)_{s}$, and $\nu(CuS)$ frequencies are suggested from the calculations. The bidentate bonding reveals that for each pair one frequency is IR-active, and other one is Raman-active. Hence, in the IR spectrum of bidentate Cu(Me₂dtc)₂, one narrow ν (N-CS₂) (1534 or 1412 cm⁻¹), one ν _{as}(CS) (979 cm⁻¹), and one ν (CuS) (361 cm⁻¹) band should appear (Figure 5). Due to the low IR and Raman intensities, the $\nu_s(CS)$ band is not indicative. Generally, the frequencies of the bidentate Cu(Me₂-dtc)₂ show low Raman activity. The unidentate bonding produces two almost degenerate frequencies with IR and Raman activities for each vibration. Hence, broad bands for ν (N–CS₂), ν (C=S), and ν (C–S) modes of unidenate Cu(Me₂dtc)₂ are expected. In contrast to the low Raman activity for the bidentate bonding, ν (N–CS₂) (ν (C=S) (962 cm⁻¹), ν (C–S) (875 cm⁻¹), and ν (Cu–S) (302 cm⁻¹) show high Raman activity (Table 9 and Figure 5). Therefore, the vibrational study of uni- and bidentate Cu(Me₂dtc)₂ complexes confirmed the trends obtained for uni- and bidentate AgMe₂dtc: high Raman activities for ν -(N–CS₂), ν (CS), and ν (CuS) bands in the case of bidentate bonding and low Raman activities in the case of bidentate bonding. The calculated spectra of uni- and bidentate complexes reveal similar values of Δ ($\nu_{c=s} - \nu_{c-s}/\nu_{as} - \nu_{s}$) =70–80 cm⁻¹.

The comparison of the vibrational behavior of the ν (N–CS₂), ν (CS), and ν (CuS) modes of the bidentate Cu(Et₂dtc)₂ complex to those of the Cu(Me₂dtc)₂ complex showed only one exception: The band next to the ν_{as} (CS) band (which should appear at ~900 cm⁻¹) is attributed to the ν_{s} (CS) vibration for Cu(Me₂dtc)₂ and to the δ (CCN) vibrations for Cu(Et₂dtc)₂. The ν_{s} (CS) vibrations of Cu(Et₂dtc)₂ appear at a lower frequency, 840 cm⁻¹; hence, the frequency difference (Δ ($\nu_{s} - \nu_{as}$)) of Cu(Et₂dtc)₂ is larger (~150 cm⁻¹) than that of the Cu(Me₂dtc)₂ complex (~50 cm⁻¹).

4. Conclusions

The reliability of the DFT/B3LYP method (with 6-31++G-(d,p) for the ligand atoms and 6-311+G(d) for Ni(II), Cu(II), and Zn(II) ions) to predict the geometrical parameters and spin state of metal complexes of R_2 dtc (R = H, Me, or Et) is verified by virtue of available experimental geometries. Gas-phase optimization of Cu(Et₂dtc)₂ reveals symmetrical M-S bonding, whereas the periodic DFT calculations (including unit cell parameters) lead to asymmetrical M-S bonding in agreement with the experiment. The results obtained showed more complicated correlations for M(II)-R₂dtc bonding in M(R₂dtc)₂ complexes than $M(R_2dtc)^+$ ones. According to the EPA calculations, the electrostatic attraction is the dominant contribution to the $M-S_2(R_2dtc)$ bonding. The orders of the electrostatic attractions and the orbital interactions follow the trend of the total binding energy, revealing that both contributions are responsible for the binding energy order. The calculated M-L binding energy decreases in the order Ni $-S_2$ (Ni(R₂dtc)₂) > $Zn-S_2$ ($Zn(R_2dtc)_2$) > $Ag-S_2$ (AgR_2dtc) > $Cu-S_2$ ($Cu(R_2-Cu)$ $dtc)_2$). The calculated π -back-donation is very small, and the σ -donation is the dominant contribution to the donor-acceptor interaction in Ni(R₂dtc)₂, Cu(R₂dtc)₂, and Zn(R₂dtc)₂ complexes.

The calculated formation reaction energies of $M(R_2dtc)_2$ complexes in the gas phase and solution showed (i) a decrease of the stability in the order Ni(R₂dtc)₂ > Cu(R₂dtc)₂ > Zn(R₂dtc)₂, (ii) a slightly larger stabilization of M(Et₂dtc)₂ complexes than that of M(Me₂dtc)₂, and (iii) a stabilization of M(II)(R₂dtc)₂ complexes going from the gas phase (nonpolar solvent) to a polar solvent and destabilization of the bidentate AgR₂dtc in a polar solution. The calculated formation reaction energies are in agreement with available experimental data. According to the calculations in solution, Ni(II) is the metal that most likely should inhibit the transformation reaction of dtc in soil followed by Cu(II), Zn(II), and Ag(I).

The results from the theoretical (DFT) vibrational study of uni- and bidenate bonding in R_2 dtc metal complexes for the M(I)/ R_2 dtc ratio = 1:1 (AgR₂dtc) and for the M(II)/ R_2 dtc ratio = 1:2 (Cu(R_2 dtc)₂) showed the following trends: (i) For uni-

and bidentate bondings in AgR₂dtc complexes, one band in the 1060–920 cm⁻¹ IR/Raman region is expected (due to ν (C=S) and $\nu_{as}(C-S)$ vibrations, respectively), (ii) for the unidentate $Cu(Me_2dtc)_2$ complex, both $\nu(C=S)$ frequencies are degenerate, both are IR- and Raman-active, and therefore one broad ν (C= S) band should appear, and (iii) for bidentate $Cu(R_2dtc)_2$ one $v_{\rm as}(\rm CS)$ band is IR-active, the other one is Raman-active ($\Delta \approx$ 10 cm⁻¹), and hence a shoulder of the main $v_{as}(CS)$ band is expected to appear when the symmetry lowers. The number of bands in the $1060-920 \text{ cm}^{-1}$ region is not indicative of the M-R₂dtc bonding type because one band is predicted for both uni- and bidentate bonding of dtc as well as for symmetrical and asymmetrical M-S bondings. Periodic frequency calculations for Cu(Et₂dtc)₂ showed that splitting of the main ν_{as} (CS) band is an indication of the nonplanar MS₄ fragment due to the intermolecular couplings.

Uni- and bidentate AgMe₂dtc and Cu(Me₂dtc)₂ complexes produce a similar splitting of the ν (CS) band $\Delta(\nu_{C=S} - \nu_{C-S}/\nu_{as} - \nu_s) = 70-90 \text{ cm}^{-1}$, whereas uni- and bidentate AgEt₂dtc and Cu(Et₂dtc)₂ complexes give a larger splitting of the ν (CS) band $\Delta(\nu_{C=S} - \nu_{C-S}/\nu_{as} - \nu_s) = 120-140 \text{ cm}^{-1}$. In the case of metal complexes of Et₂dtc, the ν (C=S) and ν (C-S) as well as ν_{as} (CS) and ν_s (CS) frequencies are not consecutive; the δ -(CCN) vibration appears between them and makes an impression of splitting of the ν (CS) band.

The most important vibrational characteristic that can be used to discern uni- and bidentate bonding of AgR₂dtc and Cu(R₂dtc)₂ complexes is the Raman activity of the $\nu_{as}(CS)$ ($\nu(C=S)$) band in the 1060–920 cm⁻¹ region: It is very high for the unidentate bonding and low for the bidentate bonding. A similar trend is observed for $\nu(N-CS_2)$, $\nu_s(CS)$, and $\nu(MS)$ bands, and they also could be applied as indicators of the M–R₂dtc bonding type.

Acknowledgment. The authors are grateful to the reviewer for the constructive recommendations that improved the quality of the paper.

Supporting Information Available: Full list of experimental and calculated vibrational spectra of Ni(Et₂dtc)₂, Cu(Et₂dtc)₂, and Zn(Et₂dtc)₂ at the B3LYP/B1 level and calculated vibrational spectra of Ag(Me₂dtc) and Ag(Et₂dtc) at the B3LYP/B2 level. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Sachinidis, J.; Grant, M. W. Aust. J. Chem. 1981, 34, 2195.

- (2) Ribeiro da Silva, M. A. V.; Reis, A. M. M. V.; Ferreira da Silva, M. M. R. J. Chem. Thermodyn. 2000, 32, 1319.
- (3) Ribeiro da Silva, M. A. V.; Reis, A. M. M. V.; Faria, R. I. M. C. P. J. Chem. Thermodyn. **1995**, 27, 1365.
 - (4) Porento, M.; Hirva, P. Theor. Chem. Acc. 2002, 107, 200.

(5) Yang, Y.; Zuo, B.; Li, J.; Chen, G. Spectrochim. Acta, Part A 1996, 52, 1915.

(6) Lee, C.-R.; Tan, L.-Y.; Wang, Y. J. Phys. Chem. Solids 2001, 62, 1613.

(7) (a) Thorn, G. D.; Ludwig, R. A. *The Dithiocarbamates and Related Compounds*; Elsevier Publishing Company: Amsterdam, 1962. (b) Jankiewicz, B.; Ptaszyński, B.; Turek, A. *Pol. J. Environ. Stud.* 1999, 8, 35.
(8) Magee, R. J. *Rev. Anal. Chem.* 1973, 1, 335.

(9) Sawhney, B. L.; Brown, K. Soil Sci. Soc. Am. 1989 (Special Publication No. 22, Madison, WI).

(10) (a) West, R.; Sunderman, F. W. Am. J. Med. Soc. 1929, 50, 3106.
(b) Viola-Rhenals, M.; Rieber, M. S.; Rieber, M. Biochem. Pharmacol. 2006, 71, 722.

(11) . McCleverty, J. A.; Morrison, N. J.; Spencer, N.; Ashworth, C. C.; Bailey, N. A.; Johnson, M. R.; Smith, J. M. A.; Tabbiner, B. A.; Taylor,

C. R. J. Chem. Soc., Dalton Trans. 1980, 1945.

(12) Matolcsy, G.; Nadasy, M.; Andriska, V. Pestic. Chem.: Studies in Environmental Science; Elsevier; 1988, 32, 503.

(13) Matlock, M. M.; Henke, K. R.; Atwood, D. A. J. Hazard. Mater. 2002, 92, 129.

(14) Ünlü, N.; Ersoz, M. Sep. Purif. Technol. 2007, 52, 461.

- (15) Andrus, M. E. Met. Finish. 2000, 11, 20.
- (16) Li, Y. J.; Zeng, X. P.; Liu, Y. F.; Yan, S. S. Sep. Purif. Technol. 2003, 31, 91.
- (17) Miertus, S.; Scrocco, E.; Tomasi, J. *Chem. Phys.* **1981**, *55*, 117.
 (18) Miertus, S.; Tomasi, J. *Chem. Phys.* **1982**, *65*, 239.
- (19) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
 - (20) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
 - (21) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 33, 3098.
 - (22) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 - (23) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
- (24) Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. 1994, 220, 122.
- (25) Scuseria, G. E.; Schaefer, H. F., III. J. Chem. Phys. 1989, 90, 3700.
 (26) Georgieva, I.; Trendafilova, N.; Rodriguez-Santiago, L.; Sodupe,
 M. J. Phys. Chem. A 2005, 109, 5668.

(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich. S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.05; Gaussian, Inc.: Wallingford, CT, 2004.

(28) (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. (b) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.
(29) (a) Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821. (b) Boys, S.

(29) (a) Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821. (b) Boys, S.
F.; Bernardi, F. Mol. Phys. 1970, 19, 553. (c) van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem. Rev. 1994, 94, 1873. (d) Valiron, P.; Mayer, I. Chem. Phys. Lett. 1997, 275, 46.

(30) Morokuma, K. J. Chem. Phys. **1971**, 55, 1236.

(31) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.

(32) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra,

C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.

(33) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. *Phys. Rev. B* **1992**, *46*, 6671.

(34) (a) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. **1993**, 99, 4597. (b) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. **1994**, 101, 9783. (c) van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. J. Chem. Phys. **1999**, 110, 8943.

(35) van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Int. J. Quantum Chem. 1996, 57, 281.

(36) (a) Dapprich, S.; Frenking, G. J. Phys. Chem. **1995**, 99, 93. (b) Frenking, G.; Pidun, U. J. Chem. Soc., Dalton Trans. **1997**, 1653. (c) The CDA calculations were carried out with the program CDA: Dapprich, S.;

Frenking, G. CDA; Phillips-Universität Marburg: Marburg, Germany, 1994. (37) Decker, S. A.; Klobukowski, M. J. Am. Chem. Soc. 1998, 120, 9342.

(38) (a) Kresse, G.; Hafner, J. *Phys. Rev. B* **1993**, *47*, RC558. (b) Kresse, G. Thesis, Technische Universität Wien, Vienna, Austria, 1993. (c) Kresse, G.; Furthmüller, J. *Comput. Mater. Sci.* **1996**, *6*, 15. (d) Kresse, G.;

Furthmüller, J. Phys. Rev. B 1996, 54, 11169.

(39) Bonamico, M.; Dessy, G.; Mariani, C.; Vaciago, A.; Zambonelli, L. Acta Crystallogr. **1965**, *19*, 619.

(40) Bonamico, M.; Dessy, G.; Mugnoli, A.; Vaciago, A.; Zambonelli, L. Acta Crystallogr. 1965, 19, 886.

(41) Bonamico, M.; Mazzonet, G.; Vaciago, A.; Zambonelli, L. Acta Crystallogr. 1965, 19, 898.

(42) (a) Trendafilova, N.; Kellner, R. *Spectrochim. Acta* 1991, 47, 1559.
(b) Kellner, R.; Gidaly, G.; Nikolov, G. St.; Trendafilova, N. S. *Mikrochim. Acta* 1983, 183.

(43) Guerra, C. F.; Handgraaf, J.-W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25, 189.

(44) Ribeiro da Silva, M. A. V.; Reis, A. M. M. V. J. Chem. Thermodyn. 1989, 21, 423.

(45) Ribeiro da Silva, M. A. V.; Reis, A. M. M. V. J. Chem. Thermodyn. 1989, 21, 167.

(46) Dietz, O.; Rayón, V. M.; Frenking, G. *Inorg. Chem.* 2003, *42*, 4977.
(47) Bonati, F.; Ugo, R. J. *Organomet. Chem.* 1967, *10*, 257.

(48) Kelner, R.; Nikolov, G. St.; Trendafilova, N. *Inorg. Chim. Acta* **1984**, *84*, 233.

(49) Herlinger, A. W.; Wenhold, S. N.; Long, T. V. J. Am. Chem. Soc. 1970, 92, 6474.

(50) (a) Brown, D. A.; Glass, W. K.; Burke, M. A. *Spectrochim. Acta* **1976**, *32*, 137. (b) Frigerio, A.; Halac, B.; Perec, M. *Inorg. Chim. Acta* **1989**, *1564*, 149.

(51) Sánchez-Cortés, S.; Vasina, M.; Francioso, O.; García-Ramos, J. V. Vib. Spectrosc. **1998**, *17*, 133.